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1.   Introduction and review 

How to evaluate from observations, all subject to error, an estimate 

of a functional relation has been a persistent statistical problem for 80 

years.   Men the relation is linear, when errors of observation are normally 

distributed, and when either nothing is postulated about distribution of the 

underlying hypothetical variables or they are assumed to be also normally 

distributed random variables, a consistent solution is possible only if the 

ratios of variances and covariances of the errors are known (or alternatively 

all but one of the second moment parameters of the error distributions).   We 

shall consider here a linear relation between two variates \n.th homogeneous 

error variances.   Usually one assumes the covariance to be zero and the 

ratio of variances known.   With that condition the solution was given by 

Kummell in 1879 and has been several times rediscovered.    Nevertheless the 

theoretical foundation for Kummell1 s solution has remained ambiguous; it is 

known to be consistent, but beyond that its statistical properties such as 

bias and efficiency have not been investigated.    Miss Dent  (1935) seems to 

have been the only writer to attempt to evaluate the sampling variance of the 

estimated slope and her solution is far from satisfactory.    It ignores dis- 

tinction between parameters and statistics, it is based on a Taylor expansion 

which is not always convergent, and as it seeks the variance of tan (2ß) it 

degenerates toward infinity in the most important region where the slope, 

tan p, is near unity. 

The purpose of this paper is to show why Kummell's solution is unique,« 

thence to prove that it is efficient and unbiased, with respect to the angle 

of the line with either coordinate axisj and to obtain its sampling distri- 

bution. 
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Consider the following model. Two variables, '7, and tip, are linearly 

related? 

'/! = A + B ?2 (1) 

or   v
ll cos ß - !|2 sin ß - »< = 0 (2) 

Experimentation yields paired observations 

Jpi  /pi  pi 

p = 1, 2; i = 1 ,., n 

The errors of observation, 5,, 62, are assumed to be random variables 

2 
normally independently distributed with zero means and common variance cr * 

Except where otherwise stated nothing is postulated about the distribution 

of i?. (or equivalently, owing to the relation (1), of "yL). The model is 

illustrated in fig, 1 where circles represent equal frequency contours of 

the distribution of 6 , In particular we will consider the circles with 

radius equal to a . Only two sub-populations are shown in the figure although 

usually n would be substantially greater than two. The relationship (1) is 

i 
represented by the line AA • 

We shall consider also the more general model where errors of observations 

are not independently distributed with equal variances. Let the observations 

then be denoted x .. and assume them to be normally distributed with variances 
pi' " 

ff-jj, a«« and covariance a,,, ar:.>and centers K.  which obey the relation 

fl ° "' * B' % Ö) 

This model is diagrammed in fig. 2, We consider in particular the contour 

ellipse 

a22e1 - 2a;L26l62 + a^ * a^ - a^   (h) 
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where 6   " x   -   c .   The length of any radius of this ellipse is the 

standard deviation of any section of the bivariate frequency distribution 

in the same direction; and the projection of the ellipse on any line is 

the standard deviation of the marginal distribution of the sub-population 

projected onto that line» 

Provided we know either two of the quantities o   , or two ratios among 

them, this model can be transformed to the previous one by 

yi ■ Vi+ *2*2 (5) 

y2 = blxl + V2 

subject to 

alCTll + 2ala2a12 + 4°22  3 biall + 2blb2a12 + b
2a22 

alVll + (alb2 + a2bl)a12 + a2b2a22 = 0 

a transformation which can be made in many ways. All deductions about the 

"y" model can be transferred to the "x" model by the transformation. 

Efforts to find a means of estimating the functional relation (1) or 

(3), under conditions stated, have followed one of three lines, namely: 

I by considering criteria of consistency, II least squares, III maximum 

likelihood, (We exclude from consideration here estimates from moments of 

higher than second order which become available when 1 is postulated to have 

a non-normal frequency distribution.) The following review quotes only a 

few of the papers on the topic to indicate salient features of the literature. 

I: Criteria of consistency are exemplified by the proposals of Gini (1921), 

Seares (19lik, 19li$)  and Hald (1952). Usually this method seeks to apply an 

adjustment to the regression lines. If the hypothetical values were known 



with means zero we would have 

Consistent estimators for the numerator and dencminator are J^y^y« and 

■rr  2 2 
Jy   « na respectively. There are variants. With certain assumptions 

the Kummell line may be indicated in this way (Lindley, 19i;7, sec. 7.3)• 

II. The method of least squares is the commonest approach. The 

usual idea has been to minimize a sura of squares of deviations of 

observations from the fitted line. The problem has been to determine in 

what direction should the deviations be measured« 

Adcock (1878-79) and Pearson (1901) minimised sum of squares per- 

pendicular to the line without attention to the ratio of error variances. 

Roos (1937) however pointed out that this produces a solution which fails 

to be invariant under change of scale. He considered that the direction 

in which deviations are measured should depend only on the precisions of 

the observations and be independent of the slope of the line» He therefore 

proposed to use deviations at hS0 to either coordinate axis when variates 

are scaled so as to have equal precisions. But lindley il9kl,  sec. 8,2) 

pointed out that even this gives consistent estimates only under rather 

special conditions. 

Kummell (1879) and Deming (1931-ii3)(assuming ^ " 0) proposed to 

minimize 

si^i' hi  + 
(X2 ' >^ S- 2l-±-~^   +-A__/_iL_ ^    (6) 

all ^22 
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or, equivalently, a proportionate expression using only the ratio 

X B a,,/op,,, subject to the restriction (3). Kummell showed that a 

solution is obtainable only if X be known and that it is equivalent to 

minimizing the sum of squares of deviations perpendicular to the line when 

the variables are scaled so as to have equal error variances, that is when 

transformed to the form (1), He reached the well known solution of the 

quadratic equation 

(S11 - XS22)B + (\'B
2)S12  «0     (7) 

where S,, = ^ (x, - x,) , etc. 

To fit curves and planes he proposed an approximate method which shows 

interesting variation on usual procedure. Mien residuals are not linear in 

the parameters the classical least squares method begins by expressing the 

residuals (before squaring) as the linear terms of a Taylor expansion in 

adjustments to trial parameter values. Kummell first expresses S as a 

Taylor expansion linear only in the deviations (x - f ) and uses this to 

eliminate the c and obtain for the residuals (e.g.« x, - A - B Xp) 

so-called weights which are usually functions of the parameters. The whole 

expression S, with c thus eliminated, is then expressed as a Taylor expansion 

in adjustments to trial parameter values, and with the 'weights' remaining as 

functions of the parameters in subsequent differentiations, (Roos criticizes 

laxity in his mathematical arguments.) 

Doming's approximating procedure is more similar to the usual least 

squares approximation but differs in that the expansion of the residuals 

contains simultaneously terms both in (x " f ) and in parameter adjustments. 

It leads to »weighting» of the observable residuals similar to Kummell's 
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formulation, but with the weights expressed as functions of the trial 

parameter values and hence .entering differentiation as constants. In 

classical procedure the parameter adjustments tend to zero as iteration 

proceeds with convergence on the required estimates. Doming's expansion 

differs in the material respect that the discrepancies (x - C ) do not 

tend to zero and cannot be made to do so without losing contact with the 

observations which must remain as the anchor for computations. His book 

repeatedly reiterates that the solutions obtained will differ from the true 

ones only in squares of the residuals, but it evades enunciating the corollary 

that since these same squares of residuals constitute the function on whose 

minimization the solution depends they are not negligible. When the fitted 

relation is linear the procedure leads to one of the regression lines (albeit 

with a modified estimate of the error variances). In this case it fails to 

distinguish (as it appears to purport to do) between regression and the 

functional relation, and the proposed weighting procedure is wasted effort, 

Ivhen a curved relation is to be estimated it does allow that observations 

in regions of very steep slope do not get the very high weights which 

regression would in effect assign to them. But just what may be accomplished 

se3ms not to have been threshed out. Recognition of the order of magnitude 

of neglected tenus suggests that bias may still be about as great as by any 

simpler method; it suggests indeed that the method may be strictly appropriate 

only when residuals are so small that almost any method of fitting will yield 

a satisfactory result, (A similar comment was made by J. H. Smith, 19h5*) 
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Lindley {19kl) seeks a least squares solution by considering the squares 

of residuals defined by the form in which the relation happens to be writtenj 

in particular using (3) he writes the residuals as 

(x1 - A - B Xg) 

With assumptions cr   /CT p = X and a.- =0, he then notes that the variance 

of these residuals is proportional to (X + B    ) and states that this must 

be introduced as a weight so that the function to be minimized is 

t        t    .2 
_, ^ - A   - B Xgj ^ 

X + B 

This produces Kumraell's equation but to imply that it is a weighted least 

squares solution is, I think, misleading, Weights are introduced into the 

least squares procedure to take account of variation in precision of the 

observations, (I omit these here for simplicity. They, lindley's P., Q , 

are easily added if required.) Here all the observations have equal weight, 

and (X + B ) is not a weight in the ordinary sense. Lindley pertinently 

remarks that his procedure has the advantage "that the redundant 5 are never 

mentioned", but he does not explain why they can be thus banished, 

III. The maximum likelihood solution has been considered by Dent (1935)^ 

Lindley (191*7) and Kendall (1950, 1951;). They begin by writing the likelihood, 

assuming a „ * 0, as 

(2.) %11a22) "/
2 exp - * -- -V^- - -±—a ^ I 

G22 CT11      J 1 

and treat w as P31"3"16*6^s • With no further postulates Lindley and Kendall 

conclude that all is not well viith the resultant equations because they lead 

to the ratio of estimates of 0,^: a,, being ß — an unacceptable result. 
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while admitting the result to be unacceptable it is scarcely by itself 

adequate reason for rejecting the method and they do not elucidate why this 

result appears. Since the likelihood is formulated for 2n observations 

indeterminance is not due, as has been suggested, to trying to estimate more 

parameters than there are observations. We shall see later that the trouble 

is that, relative to distribution of the only deviations which are observable, 

these two parameters enter as a single unit. 

This formulation, with the ratio ^i/opo known, is easily seen to be 

equivalent to Kummell's least squares formulation. The unpleasant feature 

lies in regarding s . as parameters to be estimated, Nsyman and Scott's (191*7) 

"incidental parameters". The word "parameter" as used in statistics has not 

yet been very specifically defined. Relative to the theory of maximum likeli- 

hood it may be defined as a characteristic constant of a probability distribu- 

tion. To specify a particular parameter we must be able to specify the 

population of random variables of which it is a characteristic. That being 

done it is at least theoretically possible to return again and again to re- 

sample the specified population, thereby increasing the sample size from which 

its characters may be estimated. But that is just what, in the problem before 

us, cannot be dene. A basic feature of the problem is that we never know and 

can never state that any two or more pairs of observations are drawn from the 

same sub-population with a particular C,., s«-.-; ^y are never definable 

as the characters of a specifiable population and we can never increase sample 

sizes for their estimation as is required to demonstrate the optimum properties 

of maximum likelihood estimators. Purthermore vie are not interested in the 

j . individually, we are concerned only to estimate the line as a whole. The 

'pi are essentially variables, not parameters at all. They may or may not 
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be random variables, that is variables with an associated probability- 

distribution, depending on the procedure by which observations are selected. 

If they are random variables the parameters of their distribution may become 

parameters also of the overall distribution of the observable x and appro- 

priate formulation is self evident (appendix 2), If the location of observa- 

tions is chosen in a way which precludes assigning a probability distribution 

to S, to treat them as parameters may yet be inappropriate, and we should 

seek some other method to eliminate them from the problem. 

2, Least squares formulation 

The method of least squares seeks estimates of parameters which minimize 

a sum of squares of residuals which are usually expressible as 

^ - ei do) 

where x. are observations, and 9. are functions of the estimandsand known 

constants. For the Gauss-Markoff theorem to be applicable, with consequent 

nice statistical properties of the estimators, it is necessary (David and 

Neyraan, 1931)  that 

(i)  E(xi) = e. 

(ii)  9. be a linear function of the estiraands 

(iii) the relative weights of x. be known. 

Little seems to be known about the precise statistical properties of estimators 

when these conditions are not met. Conditions (i) and (iii) are invariably 

assumed. Failure of (ii) creates no difficulty in principle for estimating 

the parameters, beyond that the solution may have to be approached by itera- 

tion; but estimators may no longer be unbiased, and reliability of approxima- 

tions to their variances and covariances, based on linear approximations, 

seems -uncertain. 
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l-Jhen we have to deal with a relation between observations all of which 

are subject to error we do not obtain a clean separation between observations 

and estimands as at (10). We must deal with residuals which are mixed 

functions of the two, for example from (1) or (2); 

r = 3^ - A - By2 or y^ cos ß - y2 sin ß - /. 

This additional complication has been slurred over by writers who have en- 

deavored to apply the principle of least squares to such situations. 

The residuals of classical least squares, and relative to which the 

principle was developed, are univariate quantities. The residuals with which 

we have to deal are compounded of two variates, but once compounded in a de- 

fined manner the compound becomes again a univariate quantity and should have 

a univariate probability distribution. The only quantities on which inference 

must be based are deviations from observed points to the fitted line; there 

crc nsirh quantities. The hypothetical c or n , being irrelevant to the 

problem, if they can be eliminated, the deviatlonfl must be defined by measure- 

ment in some specified direction. 

It seems natural to assume as a first requirement that the residuals 

should be formulated so that E(r) = 0. That condition is satisfied for all 

formulations which have been proposed when expectation is taken to imply 

expectation over the bivariate distribution of y1 and y?, or of x-, and x« 

in each sub-population. But after noting that the residuals are essentially 

univariate quantities it seems reasonable to consider their distribution about 

the line as conditioned by the direction in which it has been decided to 

measure them (cf. app. 1). Suppose one may decide to measure the deviations 

i 
parallel to some arbitrary direction BB , fig. 2. The mean values of con- 

ditional distributions formed by sectioning a bivariate distribution in that 
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direction then lie on a diameter CC which bisects all chords of the contour 

ellipse which are parallel to BB . The conditional expectations of r are 

then quantities QR whose magnitude depends on the distance of BB from ), L, 

The net effect of minimizing a sura of squares of such deviations is to bias 

i 
the estimated line in the direction CC . However such bias can be eliminated 

if the deviations be measured in one, and only one, particular direction. If 

the deviations be measured in a direction parallel to tangents to an equi- 

i 
frequency contour ellipse at its intersection with the functional line AA  , 

i i 
that is in the direction DD , fig. 2, the locus of expectations CC then 

coincides with AA and the expectations of deviations (QR) are identically 

zero independently of )-,,    L. Mien deviations are so measured we may re- 

gard them as normally distributed about the line AA , and thus, and only thus, 

the incidental variables s can be eliminated from the problem. 

When transformed to our "y" model, figure 1, the condition is seen to 

be when deviations for independent errors of equal variance are measured 

perpendicular to the line. Furthermore the variance of such deviations is 

2 
immediately seen to be a . In figure 2 the standard deviation is equal to 

the length of the radius vector, TD , parallel to DD , for the ellipse (k); 

but the expression for this length is not simple. 

3« Maximum likelihood formulation 

For simplicity consider the standardized "y" model, figure 1, The 

deviations to be considered are those perpendicular to the line. From any 

text book of analytical geometry (or from elementary trigonometry) the 

distance of a point from the line is 

(y^A-By^d+B2)"1/2     (ll) 
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IVe have seen that these deviations are normally distributed with mean 
2 

zero and variance a .   The likelihood is therefore o 

T      /0   2v-n/2 L * (2na )   '      exp 
2cc 

(y1 - A - By2) 

1 + B^ 

2 7 

(12) 

It is maximized when >. (y^ - A - By^)   / (1 + B ) is minimized.   This is 

Lindley's formulation but we now see that the factor (1 + B )   (or, more 

•2 
generally, X -f B ) is introduced to evaluate the only deviation from whose 

distribution the redundant c can be eliminated. It is not entered as a 

weight; that it happens to be proportional to the variance of the marginal 

distribution when the whole bivariate distribution is projected onto a 

vertical, in which direction deviations are (y. - A - By«), is an incidental 

circumstance of the bivariate normal distribution. Since the Kummell so- 

lution can now be expressed as a maximum likelihood estimator not involving 

"incidental parameters", it follows that it is asymptotically efficient. 

For further work the equation of the functional line is better expressed 

in the intercept form (2). In regression analysis the slope of a regression 

is normally distributed only because values of the independent variable are 

taken as given constants. Furthermore we cannot evaluate a regression unless 

■^    — 2 
these have some spread, that is /_, (x - x) cannot be zero, and the estimated 

slope cannot approach infinity. In the problem here considered B may approach 

infinity from either direction while the spread of x« is still substantial 

(depending on o^' ^ little consideration shows that the system is circularly 

symmetric, therefore to obtain a statistic which may be symmetrically dis- 

tributed and independent of ß we should consider the angle of the estimated 

line, rather than its slope whose distribution may be very skew and dependent 

on ß. 
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Taking the parameters to be estimated as 8 and /, the log likelihood 

is now 

InL a const, — ln a
0 T ^ (yicos ß - y^sin ß - ^) (13) 

o 

To derive the estimators assume that y., y« are measured from their means 

so that >.y e 0. 
" P 

fr B T 2 (7! oos ß - y2 sin ß - ^) (U) 

whence «< = 0, 

c)lnL _ 1    2/ (y, cos ß - y. sin ß - ^)(y- sin ß + y9 cos ß)       (15) 
Tf~7 1 2 12 

which is zero when 

2 (- (y^ - yg) sin 2ß + y^ cos 2ß) ^ 0 

^ 

tan 28 
2^2 

•^2  ^2 
(16) 

f2   'Jl 

which is equivalent to Kunmell's solution (7). 

Further deductions are easier in terms of transformed variables obtained 

by rotating to coordinate axes parallel and perpendicular to the theoretical 

line. Define 

u1 =■ y1 cos ß - y2 sin ß (17) 

u0 <* y1 sin ß + y0 cos 3 

E^) = ^ cos ß - n- sin ß » «< (Constant independently of i) 

E(u2i) = In sin $ + hicos P = ui       say (18) 



~2h - 

U is an alternative variable to  ^ or  n« and represents the distance of 

hypothetical points as measured along the line, ST in figure 1.   We then have 

_ 5 
InL a const, - - In a   - 

2cr 
(19) 

Olnl n 

da 2a 

^2    ^ / \2 / 0 when a   ■ /_. (u, ~ A) /n (20) 

Since du-/dß 0 -iu, and Up is a constant relative to each conditional 

distribution along a fixed line DD , the elements of the information matrix are 

,, /^lnL\2   „    ^2lnL . n 

2) 7 

37" 
- E D2lnL   m   n 

J(7?     2*7 

E ^InL 

}*} 7 E& 
dfida' 7 

(21) 

where £   implies conditional expectation given IU.   However we have here the 

peculiarity that as ß is varied there is a shift in the directions along which 
A 

the deviations are measured.    On more accurately evaluating var (ß) it will 

turn out, as we might intuitively expect, that a better approximation to the 

variance-covariance matrix is given by replacing u« by U wherever it occurs 

in (21),   A peculiar feature of this formulation is that, allowing tu to be a 
•2 s! .2 

variable, ^(ugj) ■ ^ and dUg/dß ■ u-,, we obtain - E - =£= - -=-£- as required} 

Mr2 ' ri2 2 

but the alternative form £(—=)   otill remains as <'0   * na .   The product 
^ a2 
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term ~— . (
-T— on the other hand has the same expectation as - ~-r— • 

UJ.       <)ß tWß 

Pull theoretical implication of that inconsistency eludes me; it is 

evidently associated with the condition that the direction in which the 

postulated sampling distribution of observations is defined "wobbles" 

with errors in estimating its parameters. We shall see later that the 

condition under which the indicated variances are approached is not n-4co, 

but that the ratio (a / second moment of U) --^0. 

The asymptotic variance-covariance matrix is therefore indicated to be 
2 

n A 

ß 

-Ü 
A 

1 

A 

a 

0 

(22) 

where Ü !S2v/n,     A «^ (U - Ü)2. 

2^ 

Alternative formulation of the likelihood, and of the associated 

variance-covariance matrix of the estimators, if estimates of individual 

Ik may be deemed relevant, is indicated in appendix 1. The likelihood 

formulation if U is also a normally distributed random variable is stated 

in appendix 2, 
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iu   Sunmary of additional results 

The distribution of ß Is symmetric.   By approximating (ß-ß) by a power 

series of variables, whose joint moment generating function can be easily 

obtained, it has been ascertained that for finite samples the variance of 

ß is 

n 1 £ 

f. (1 + w) + fe- (2w + w2) ♦ ^2- (-2 + 27w + l|8w2 + low3) + Oi^) 

2 
where w =» (n - l)a /A, 

The parameter of kurtosis is 

V « 2a_ (2 + w _ ^ + 0(A.2) 

(al) 

(a2) 

If 
U-L = (yj - y1) cos ß - (y2 - y2) sin ß 

then 
2 

E( 5u2) = a2 rn-2-w + -iL (1-2w-w2) - -2H-_ (11+16W-^W2+3W3) - 0(n"3)L 
1    -     n-1        (n-1)^ J 

(a3) 

Since (n-2) will usually be large relative to w we may for most practical 

purposes suppose (n-2) "degrees of freedom". If then we accept as estimator 

of the error variance 

A2   ^A2 /f   „. 
^ ^ -^'ul /(n-2) 

its mean square error is 

E(^ , ,2)2 . 2jt , ^Wj , >t0(n-3) 
n-2  (n^)^ 

(all) 

(a5) 

If 

«2 B (7^2) sin ß + (y2-y2) cos ß 
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a satisfactory estimator for the variance of ß is 

-A  A 
var(ß) - 'Ul + (n-l)Q) {a6) 

where Q B 7—TT^Z TST (a7) 

(n - 2) >.y2 " n-^ui 

E(vaXr(ß)) - 2- (1 + w + JL)+ % (9 + 22w - 8w2) + 0 ^       (a8) 
A       n-r A^ nA2 

which compares reasonably favorably with the value required for an unbiased 

estimator as indicated by (al). 

An approximate fiducial interval for ß is given by 

«   1 ,2  SuS« - S . 20ß  at   1 2  c . . 
sin 29 » =— .  R «• (39) 

n-2  (Sg-S/ +hsl 

where Ö = ß - ß 

S 3 ^ (v ~ y ) p   ^p •'p7 

sc 
a h ^ - y1)(y2 -y2) 

t = Student's t for the required fiducial probability and (n-2) degrees 

of freedom. 

The error in this interval seems likely to be negligible for the kind of data 

to which such lines are usually fitted, say for fiducial intervals of less 

than n/li. 

——~f- 
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I have been unable to obtain the exact sampling distribution of ß under 

the model so far assumed. But if we add the postulate that Ü is normally 

distributed about zero with variance cC, then, with notation as follows 

a* -a2^) =cr2 

2 
a2 -a

2^) - 4 + 2 
ao 

Q 
2«       2 

c 2       2 
"  CT-    COF   Q +4 2 

sin © 

n is even = 2k + 1; 
A 

the probability density function of 9 = (ß - ß) is 

f(9) 
2n-3(n-2) (^2) 

n-1 k 

Q2Ck+2 
4(k+l-i)|k+i;^) (alO) 

Proof of these statements, and the appendices noted above, will be 

submitted in a later report. 
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